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Elastic recovery at hardness indentations 
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The mechanics of hardness indentation are considered. On the basis of a cycle in which 
the loading is elastic-plastic and the unloading (and subsequent reloading) elastic, an 
expression is derived for the relative depth recovery of the impression as a function of 
hardness/modulus, H/E. Experimental observations on indented surfaces of selected 
materials, mostly ceramics, using a tilting procedure in the scanning electron microscope 
to measure the residual depths, confirm the predicted trends. The analysis offers a simple 
means of characterizing the deformation properties of materials and should provide a 
basis for evaluating a range of contact-related properties, particularly surface damage 
phenomena in sharp-particle impact. 

1. I n t r o d u c t i o n  
When a sharp indenter is loaded onto a flat test 
specimen it leaves a residual surface impression. A 
convenient measure of the material hardness may 
then be obtained by dividing the peak contact load 
by the projected area of the impression [1]. It is 
clear that hardness thus defined may be taken as 
an indicator of the irreversible deformation pro- 
cesses which characterize the test material. What is 
not so obvious is that this same quantity must also 
depend to some extent on the reversible defor- 
mation processes. For, the indentation stresses, 
although highly concentrated in the plastic region 
immediately surrounding the contact, may never- 
theless extend at a significant level into the more 
remote elastic matrix. That is, hardness is strictly 
an elastic-plastic parameter [2]. A manifestation 
of this is the fact that impacting particles, sharp or 
otherwise, tend always to rebound from a target 
surface with non-zero velocity. The mechanics of 
hardness indentation are accordingly of consider- 
able interest in the context of materials evaluation; 
apart from providing insight into the nature of the 
deformation itself, they bear strongly on the 
susceptibility to attendant microcrack generation 
[3, 4], with consequent relevance to strength 
degradation [5] and wear and erosion [6] of brittle 
solids. 

One way in which the relative importance of 
reversible and irreversible components of contact 

deformation might be expected to be evident is in 
the elastic recovery during unloading of the 
indenter. Studies of impression geometries in 
metallic and non-metallic materials using various 
standard microhardness indenters indicate that 
whereas characteristic in-surface dimensions 
generally remain a reasonably faithful measure of 
those at maximum loading (thereby justifying a 
definition of hardness in terms of post-indentation 
measurements) the depth does not [7, 8]. 
Extremes in depth recovery are shown by "soft" 
metals, where it is negligible, and "highly elastic" 
rubbers, where it is nearly complete. Typically 
brittle materials, e.g. ceramics, which are of  
primary interest in this work, will be seen to 
occupy the "middle ground". The question there- 
fore arises as to how the indentation recovery may 
be quantified in terms of well-defined elastic- 
plastic parameters, in a form which suitably 
characterizes the material response. 

The present paper seeks to answer this question 
by developing a formulation for the degree of 
elastic recovery as a function of a basic hardness/ 
modulus ratio, HIE. It is to be noted that b o t h H  
and E are macroscopic parameters which are 
readily measurable without explicit knowledge 
of micromechanical processes. In this sense our 
approach is somewhat phenomenological and can 
therefore provide little insight into the mechan- 
isms (as opposed to the mechanics) of indentation 
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Figure 1 Contact geometry, showing co-ordinate system: (a) at intermediate load P; (b) at extremes of indentation, zero 
load (0), maximum load (C) and complete unload (D). 

deformation. At the same time it avoids the 
extreme complication which inevitably attends 
any attempt at a detailed elastic-plastic stress 
analysis [9]. Depth measurements of residual im- 
pressions left by Vickers indentations in a range of 
selected materials provide confirmation of the 
basic theoretical predictions. The results bear 
strongly on impulsive loading phenomena and 
suggest that the hardness/modulus ratio may be 
taken as a useful indicator of a given material's 
incapacity to absorb impact energy. 

2. Mechanics of indentation cycle 
Consider a rigid, fixed profile indenter of regular 
geometry with respect to the axis of loading, i.e. 
cone or pyramid, pressed into a flat test surface, as 
in Fig. la. Then the depth of the indenter tip 
below the contact perimeter may be written as 
z = a  cot ~, where a is a characteristic contact 
"diameter" and ~ is a corresponding indenter semi- 
angle. For instance, with a Vickers indenter a is 
generally measured as an impression half-diagonal, 
whence (by definition) ~ = arctan (7/2) = 74.05 ~ 
is the semi-angle between opposite pyramidal 
edges. The actual penetration of the indenter 
below the specimen surface is denoted by Z, which 
will differ from z if the contact perimeter is 
depressed (as shown in Fig. 1) or elevated. We 
may take this into account by writing Z = 7z, 
where 3' is a geometrical factor, in which case 

z = "ra cot  ~ (1) 

becomes the governing relation for penetration in 
terms of a and ~. 

The object of the exercise now is to determine 
how the penetration varies with applied contact 
load P through the indentation cycle, i.e. we 
require the function P(Z). Not only does this 
function hold the key to the degree of depth 
recovery, its integral directly determines the 
mechanical energy input associated with the 
indentation process. Our first step to this end is to 
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introduce the mean contact pressure, Po, i.e. the 
normal force divided by the projected constant 
area, into the description; then, with the aid of 
Equation 1, we may write 

P = pooLoa 2 = [po(ao/7 2 ) tan  2 ~ ] Z  2, (2) 

where % is another geometrical factor (a o = 2 for 
a Vickers indenter). Thus for any conditions under 
which the terms within the square bracket on the 
right-hand side of Equation 2 remain invariant, the 
load is quadratic in penetration. This form of 
dependence was first discussed in relation to the 
problem of elastic recovery, for the special case of 
conical intenders, by StilweU and Tabor [8], 
whose paper stands as an important precursor to 
the present work. Our analysis builds on that of 
these earlier workers in two major respects: first, 
we develop the formalism in terms of the basic 
HIE parameter, so that materials evaluation may 
be more convenient; second, we incorporate a 
residual-field term to allow for the post-indentation 
configuration representing a significant departure 
from that of the initial, flat test surface. 

Let us now consider the loading-unloading 
indentation cycle in two separate stages, with 
reference to Fig. lb for the boundary conditions: 

(i)Loading half-cycle. During loading the 
material deforms in a complex elastic-plastic 
mode. A well-established, simplifying feature of 
this deformation is the geometrical similarity 
which characterizes the associated stress and dis- 
placements fields [1]. In terms of Equation 2, 
this means that the composite square-bracket 
factor is independent of P, provided the given 
material is homogeneous. In this case the mean 
contact pressure is a constant of the material, and 
thereby affords a useful measure of hardness, i.e. 
Po = H =  constant. The parameter 7 must also 
remain constant under these conditions, and, 
provided the plastic material immediately sur- 
rounding the contact zone does not "pile-up" or 
"sink-in" to any great extent (a proviso which is 



expected to prevail in harder materials, such as 
ceramics [9] ), should not differ much from unity. 
Thus, over the loading path OC in Fig. lb, from the 
initial surface configuration at Z = 0 to the maxi- 
mum penetration at Z = Z * = T a *  c o t ~ ,  the 
controlling material parameter in the deformation 
mechanics is the hardness H. Accordingly, for this 
stage of the indentation cycle Equation 2 may be 
written with the dependent variables and par- 
ameters in an appropriately subscripted form, 

P = [H(ao/7~) tan 2 ~] Z~.  (3) 

(ii) Unloading half-cycle. The existence of a 
residual impression means that the P(Z) curve 
must show some hysteresis on unloading. However, 
this hysteresis largely disappears after one com- 
plete cycle: subsequent reloading retraces the un- 
loading path CD to good approximation [8]. 
(Upon reloading beyond the first maximum load 
point the indentation must, of course, revert to 
the original load path.) Thus the unloading occurs 
elastically. The similitude principle may be applied 
as before, but, as will be seen below, bears some- 
what closer scrutiny. For the mean contact pressure 
we follow Stilwell and Tabor [8] and make use of 
the solution of Sneddon [10] for a rigid cone in 
contact with an elastic half-space, giving P0 = 
(E cot ~)/2(1 -- v 2), where E is Young's modulus 
and ~, is Poisson's ratio. According to Sneddon's 
analysis, the parameter 7 has the value 7r/2, al- 
though in the context of the present problem we 
shall have occasion to regard this as something of 
an overestimate. Now, since this stage of the 
indentation process is essentially reversible, we 
may usefully treat the problem in terms of the 
reloading mechanics. This raises an important 
point concerning the boundary conditions;it must 
be recognized, in accordance with Equation 2, 
that it is the surface configuration at Z = 0 which 
corresponds to our zero-stress reference origin. 
Stllwell and Tabor [8] took the tip of the un- 
loaded impression as their reference origin, effec- 
tively translating their depth co-ordinate along the 
load axis, but this ignores the fact that any such 
configuration which departs from that of the 
initial flat surface necessarily exists in a state of 
residual stress. The situation is analogous to the 
loading of a precompressed spring; the true zero 
in the load-displacement response must be 
reckoned relative to the natural rather than the 
precompressed length, a distinction which be- 
comes vital if the response is non-linear, as is 

indeed the case with our "spring", Equation 2. 
Thus, as a first step in the hypothetical reload 
sequence we proceed via the path OD in Fig. tb, 
from Z = 0 to the residual depth Z = Z r  = d, to 
obtain a configuration "equivalent" to that of the 
final impression. The corresponding load for this 
step is Pr = {[E/2(1 -- v2)] (ao/7 2) tan ~}d 2, which 
may be regarded as the precompression force. It is, 
of course, at this point that the actual loading in the 
real indentation situation begins, so the "effective" 
contact force acting over the path DC in Fig. lb is 
P=PE--Pr,  where PE(ZE) is the elastic defor- 
mation function of Equation 2 for a surface with 
no residual impression (i.e. for the "spring" 
without precompression). We thus have within the 
range Zr ~< ZE ~< Z*,  in analogy to Equation 3, 

P = {[E/2(1 -- ~,2)] (ao/7~) tan ~}(Z~ --Zr2). 

(4) 
The condition for compatibility of the two 

half-cycles is that at the maximum load P = P* the 
penetrations should be equal, ZI4=Z*=ZE.  
Thus from Equations 3 and 4 we obtain 

(Zr/Z*) 2 = 1 -- [2(1 --v2)(3'E/3,~) 2 tan ~]H/E. 

(S) 

Accordingly, for a given indenter geometry the 
relative depth recovery is effectively determined 
by the hardness/modulus parameter, HIE (the 
Poisson's ratio term (1 -- v z ) varying by a relatively 
small amount from material to material). It should 
be noted that the ratio Zr/Z* in Equation 5 re- 
mains independent of the peak contact load. 

The way in which we have incorporated the 
notion of a residual force into the analysis needs 
further elaboration here. From Equation 2 we 
have immediately that Pr/P* = (Z~/Z*) 2 , so that, 
depending on the value of H/E, P~ may be an 
appreciable fraction of P*. That the intensity of 
the residual stress field around indentations can be 
substantial is well known, both from direct obser- 
vations of the associated bi-refringence in transport 
materials [11, 12] and from the effect such fields 
can have in driving indentation cracks long after 
unloading is complete [5, 12]. In this inter- 
pretation, the end-point in the indentation process 
could equally well be achieved in Fig. 1 via the 
elastic-plastic load-unload route OCD or the 
simple elastic load route OD (assuming in the 
latter case that the onset of irreversible processes 
could be suppressed by some means). However, 
the implied equivalence of these two routes cannot 
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TAB LE I Hardness and modulus of materials tested 

Material Source H/(GPa) E/(GPa) 

Soda-lime glass Commercial sheet 5.6 70 
Glass ceramic (Pyroceram C9606) Coming Glass 8.4 109 
Si3N 4 (NC132) Norton 18.5 300 
AI= 03 (AD999) Coors Porcelain 20.1 406 
MgF 2 (Irtran) Kodak 7.3 170 
WC (Co-bonded) NBS 12.7 575 
Steel ("soft") Zwick 1.62 200 
Steel ("hard") Zwick 7.7 200 

be complete. To see why not, we recall Equation 1, 
which, in the notation used above, yields aE/aR = 

3'~/7E for the relative surface contact dimension 
at the same depth ZH = Z = Z E during the loading 
(OC) and reloading (De) half-cycles. In general, 
and specifically in the vicinity of Z =Zr ,  we 
expect that 7H and 7E will necessarily differ, be- 
cause the deformation processes are themselves 
different. But as Z approaches Z* we must expect 
the two 3' terms to tend to the same value, for 
compatibility arguments it is required that a H =  aE 

at the peak loading. Hence, on the presumption 
that the constancy of 3'H is not at issue [1], the 
validity of the similitude principle in the elastic 
reloading sequence must be questioned. Never- 
theless, observations in tests on metals that the 
P(Z)  function does follow a near quadratic un- 
loading-reloading curve [8] provide some justifi- 
cation for taking the present formulation as a 
reasonable first approximation. 

3. Measurements of elastic recovery 
3.1. Materials preparation and indentation 

procedure 
In order to test the validity of the theory, exper- 
imental measurements of depth recovery were 
made at residual impressions in selected materials. 
Table I lists the selection, together with values of 
H and E. The fact that most of the materials are 
ceramics reflects our own interest in intrinsically 
brittle solids; two steels are included in the study 
for limited comparison purposes, but polymeric 
materials, because of their complex time-dependent 
mechanical properties, are avoided. The hardness 
and modulus were determined routinely for each 
material, H directly from the impression dimen- 
sions as the mean contact pressure and E from the 
elastic deflections on instrumented, four-point 
bend specimens. An accuracy of better than 5% 
was obtained for each of these two quantities. It is 
seen from Table I that the values of HIE cover a 

reasonably wide range. Each material was prepared 
with a flat, mirror-smooth test surface, using 1/~m 
diamond paste to produce the final finish. 

For the indentation procedure, a standard 
Vickers hardness testing facility was used. The 
inherent rigidity of the diamond indenter and the 
well-defined indentation pattern that results 
(particularly at the pyramidal tip and edges) in the 
specimen surface are ideally suited to recovery 
determinations. The materials were each indented 
over a range of peak contact loads, limited in each 
case by the threshold for radial cracking [3, 13] ; 
this limitation, imposed to avoid complications 
due to pattern disruption, meant that the residual 
impression depth was small, typically ~ 1/~m for 
most of the ceramics. 

3.2. Measurement of impression depth 
To measure the degree of recovery, a simple but 
sensitive procedure was devised whereby the im- 
pressions were viewed at oblique incidence in a 
scanning electron microscope. This technique was 
useful for even the smallest impression depths, 
where optical techniques (including inter- 
ferometry) were ineffective. The procedure in- 
volved tilting the indented surface with respect to 
the image plane about an axis containing one of 
the impression diagonals, thereby producing a 
foreshortening of the other, mutually orthogonal 
diagonal. Examples of the patterns obtained are 
shown in Fig. 2, for soda4ime silicate glass. It can 
be seen that the tips and corners of the pyrami- 
dal impressions are well defined in the micro- 
graphs, in spite of some curvature at the edges. 

Fig. 3 illustrates the geometrical principles in- 
volved in the recovery evaluation. For a normal 
image plane the Vickers indentation has four-fold 
symmetry, with half-diagonals of length a*. This 
orientation, of course, provides no information on 
the depth d of the impression. For an oblique 
image plane, at tilt angle/3, the pattern is reduced 
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to two-fold symmetry, with apparent half-diagonals 
a~ and a~ perpendicular to the tilt axis. We now 
have from the diagram 

a* 2 + a t  = 2a* cosfl (6a) 

Section view 

W - -  2 a * -  ,~ 

Obtique " N ~  
prone ! 

) 
2a ~----,. 

Normal 

Figure 2 Scanning electron micrographs of Vickers im- 
pressions in sodaqime glass. Peak indentation load 
P* = 2N, half-diagonal about tilt axis (horizontal in 
diagram) a* = 13 #m. Tilt angles: (a) ~ = 60 ~ , (b)/3 --- 50 ~ , 
(c) fl = 35 ~ . (Minor cracking is evident at this impression.) 

a~ --a~ = 2d sinfl. (6b) 

Elimination of/3 then gives 

d/a* = 

[(a~ --a~)/Za*]/{1 -- [(a~ + a~)/2a*] 2 }u2. (7) 

Thus the ratio of residual depth to impression half- 

diagonal may be obtained from simple, comparative 
measurements on the micrographs, independent of 
the indentation load and the tilt angle. 

Determinations of d/a* were accordingly made 
for each of the materials listed in Table I. In each 
case an evaluation was made from 15 to 25 micro- 

2~ ~ 

plane 

Figure 3 Schematic diagram showing 
geometry of impression depth measure- 
ment technique. Diagram shows pro- 
jection of impression topography onto 
normal and oblique image planes. 
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graphs, representing different indentations, loads, 
tilt angles and tilt axes (the last to average out any 
systematic error arising from non-symmetry in the 
indentation process itself). Bearing in mind that 
the most accurate estimates of d/a* from Equation 
7 will come from micrographs for which the 
pattern distortion is greatest (note that as we 
approach the configuration of normal incidence, 
such that for ~ ~ 0, aT ~ a* ~ a~ in Equation 6, 
the uncertainty in the evaluation will tend to 
infinity), the mean value and standard deviation 
for each material was computed in accordance 
with an appropriate weighting procedure. This 
procedure consisted of assigning a weight equal to 
the inverse square of the experimental error for 
each individual determination from Equation 7, 
consistent with the uncertainty in half-diagonal 
measurements on the micrographs.* 

For those less brittle materials tested (i.e. the 
steels and the WC specimens)where crack-free 
impressions could be produced to depths in excess 
of 10gm, direct optical measurements by the 
depth-of-focus technique afforded a useful cross- 
check of the scanning electron microscopy (SEM) 
evaluations. Where this was possible the optical 

*See any  text  on statistical methods .  
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Figure 4 Plot showing measured residual 
depth  parameter (d/a*) ~ as a func t ion  
of HIE for materials listed in Table I. 

0"16 

data were included in the computations of the 
recovery parameter, weighting the individual 
points in accordance with an inverse error term as 
before. 

4. Results and discussion 
If now we make the substitutions Z r = d  and 
Z* =3`a* cot ~, along with the approximation 
7H ~ 3' ~ 3'8 (Section 2), in Equation 5, we obtain 

(d/a*) 2 = 72 cot2~ -- [2(1 --v2)3` 2 cot r 

(8) 
which provides us with the necessary basis for 
analysing the results. Accordingly, Fig. 4 shows a 
plot of (d/a*) 2 against HIE. The data points 
represent the experimental determinations; the 
vertical error bars denote standard deviations (as 
determined in Section 3), and the horizontal error 
bars a nominal error of 10% in the hardness/ 
modulus ratio. The solid line is a best-fit of 
Equation 8 to the data, obtained by taking 
u = 0.25 (a representative value for the materials 
considered) and ~ = 74.05 ~ (Vickers), and by 
making the adjustment 3' = 0.91 -+ 0.08 (mean and 
standard deviation averaged over all materials). 



Fig. 4 may be regarded as a graphical indicator of 
the position occupied by the different materials 
in the elastic-plastic spectrum, i.e. between the 
extremes of ideal elasticity (d/a* = 0 ,  H/E= 
(cot ~)/2(1 --p2)  = 0.15) and ideal plasticity 
(d/a* = 3' cot ~ = 0.26, HIE = 0). 

In assessing the agreement between theory and 
experiment in Fig. 4 it is as well to remember the 
assumptions which characterize the model. We 
have already mentioned the necessary departure 
from load invariance of at least one of the 3' terms, 
in Section 2, and the consequent violation of the 
underlying similitude principle. This uncertainty 
in the value of 3" is compounded by the fact that 
we have been dealing with a pyramidal rather 
than a conical indenter; for instance, how justified 
is the use of  Sneddon's solution for axially sym- 
metric loading to derive Equation 4. In addition, 
we have taken the indenter to be rigid throughout, 
whereas in reality the effective semi-angle ~ will 
tend to a somewhat larger value, depending on the 
deformability of  the specimen material (as charac- 
terized by H and E) relative to that of diamond. 
Further, it has been postulated (with some empiri- 
cal justification from other sources) that all load- 
ing hysteresis disappears after the first cycle; the 
occurrence of reversed plasticity is not uncommon 
in elastic-plastic problems, however, and a proper 
analysis would need to examine this possibility 
more closely [14]. These are all facets of the 
analysis which call for a detailed study of the com- 
plete P(Z) response for individual materials. Our 
limited study of post4ndentation configurations, 
while providing all the pertinent information 
needed for a quantitative evaluation of recovery, 
allows us only to investigate the boundary con- 
ditions of  the problem. 

It is important to reiterate that our analysis 
deals strictly with the mechanics of indentation, 
and not the mechanisms. Equation 8 is useful in 
the light it throws on the proportions of reversible 
and irreversible deformation associated with the 
hardness parameter, and, as such, affords a con- 
venient basis for materials evaluation. As mentioned 
in Section 1, this type of information may be of 
critical importance in the determination of a 
wide range of contact-related properties, par- 
ticularly in brittle solids, but the formulation tells 
us nothing expficit about the nature of the actual 
deformation processes at the micromechanical 
level. It is possible that different deformation 
mechanisms may have some influence on the 

similitude parameter 3' in Equation 8; indeed, the 
tendency in Fig. 4 for the data points representing 
the metallic materials to lie above those repre- 
senting the ceramics may be a manifestation of a 
somewhat different deformation geometry. How- 
ever, such effects are likely to be of secondary 
hnportance only, with all the more essential details 
of the micromechanical response concealed within 
the macroscopic parameters H and E. 

5. Implications in impact loading 
It is of some interest to examine the implications 
of the theoretical development in Section 2 con- 
cerning impact phenomena. We deal here with 
impact velocities much less than the speed of 
sound waves in solids, in order that a quasistatic 
approximation may be applied. Also, we neglect 
possible sources of energy dissipation (e.g. flexural 
vibrations, losses at specimen supports) other than 
within the immediate contact zone itself. 

Suppose that a sharp indenter is incident onto a 
target surface with initial kinetic energy, U~, and 
rebounds with final kinetic energy, U~. Then 
noting that the kinetic energy must be zero at 
maximum penetration and neglecting any changes 
in gravitational potential energy during the con- 
tact, we may use work/energy principles to obtain 

u k  = Jo P(Z )dZI-x 

= �89 (9a) 

for the loading half-cycle, using Equation 3 to 
evaluate the work integral, and 

U[~ = fzZ~ P(ZE)dZ~ 

= ~e*z*  [(1 -- 3Z~/Z .2 

+ 2Z3~/Z*3)/(1 --Z~/Z*2)] (9b) 

for the unloading half-cycle (written here in terms 
of the work to reload the system), using Equation 
4. Combination of Equations 9a and 9b allows us 
to determine an expression for the coefficient of  
restitution in terms of the residual depth par- 
ameter Zr/Z*, or, in conjunction with Equation 5, 
of the material parameter H/E; 

e = ( U ~ / U ~ )  1/2 

= {(1 - -  3Z] /Z .2 + 2Zar/Z*3)/ 

(1 - - Z ] / Z * 2 ) }  1/2 (10a) 
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Figure 5 Graphical representation of Equations 10a and 
10b. showing functional dependence of coefficient of 
restitution as a function of recovery parameter and 
hardness/modulus, respectively. 

= { 3 r I H / E -  211 -- (1 -- rIH/E)3/21/(rIH/E)} m ,  

(10b) 

where r / =  2(1 -- U2)(TE/TH) 2 tan ~. Thus for a 

given contact geometry the intrinsic coefficient of 

restitution is uniquely determined by the degree of 

recovery, which is in turn determined by the 
hardness/modulus ratio. A plot of Equations 10a 

and 10b is given in Fig. 5. 
The coefficient of restitution e is, of course, a 

useful measure of the degree of reversibility of the 
contact deformation processes. The fraction of the 

work input expended in one complete cycle is 
given by ( U ~ - - U ~ ) / U ~  = 1 - - e  2. Hence the 

capacity of a material to dissipate energy decreases 

as H I E  increases. Such dissipative effects can be 
important in the characterization of surface 
damage properties in prospective sharp-particle 
impact situations, particularly in relation to 
strength degradation and erosion. They can, for 

instance, determine the extent of surface melting 

at the contact zone [15]. More importantly 
perhaps, they can exert an influence on the 
mechanics of crack initiation and propagation in 
the more brittle materials [4]. The potential also 

exists, by monitoring e as a function of contact 
velocity, for investigating time dependencies of the 

basic deformation parameters in rate-sensitive 

materials, including polymers. 
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